

號

شكل مقابل يك صفحهى كاغنى را نشان مىدهد كه قسمتى از آن جدا شده است، امتا نمىدانيم. جه مقدار از آن جدا شده است.
 بهطور مثال شكل مقابل، يك دايره است كه قسمتى از آن رنك شده است. براي نشان دادن

از آن رنك شده است.

بنابراين در صفحهى كاغذى بالا براي اينكه بيان كنيم جه مقدار از كاغذ جدا شده است، بايد از يك عدد كسرى استفاده كنيهم. برايى اين منظور بايد كلْ صفحهى كاغذ را به قسمتهاى مساوى تقسيم كرده و سپس مشخَص كنيم كه جه مقدار از آن جدا جدا شده است.

بهنظر شما براى اينكه صفحهى كاغذ را به تسمتهاى مساوى تقسيم كنيه، بايد جه كارى انجام دهيهم يك روش براى اينكه صفحهى كاغذ را به قسمتهاى مساوى تقسيم كنيه، اين است كه آن را به خانههاى شطرنجى تقسيمريندى كرده و سبس بهطور تقريبى مشخّص كنيم كه جهه مقدار از آن جدا شده است.

هman sand اكنون آموختيم كث هركاه بخواهيم قسمتى از كلز يكى شكل با هر هيز ديكرى را بهصورت يكل عدد نمايش دهيم، بايد از اعداد كسرى استفاده كنيهر به اين ترتيب كه بايد كلّ آن شكل را به قسمتهاى مساوى تقسيم كرده و سيس مىتوانيم تعيين كنيم كه جند قسمت از كلَ شكل را بايد در نظر بكيريه.

 بهطور مثال در شكل مقابل، كل" شكل به 1 قسمت مساوى تقسيه شده كه بايد آن را ايايين خطَ
 عدد كسرى مربوط به قسمتهاى رنتششدي شكل دادهشده،

$\frac{\Delta}{\lambda}$

$\frac{1}{\lambda}$

$\frac{\Delta}{14}$

با دقتت در مثالهاى بالا، به كسرهايى مثل كسر $\frac{1}{9}$ برخورد ميكنيهم كه به آنها كسرهاى مساوى با صفر كويند؛ يعنى از كلَ شكل هيجة
 همحنين به كسرهايع مثل كسر,

$$
\text { ... } \frac{1 r}{1 r}=1 \cdot \frac{q}{q}=1 \text { كسرهای }
$$

بقيّى كسرهاى بالا كسرهاى كوهكاتر از واحد هستند كه در آنها قسمتى از كل" شكل رنت شده است. مانتند:
 آيا كسرهاى بزركتر از واحد هم داريم؟؟! باسخ سؤل بالا مثبت است: يعنى كسرهاى بزركتر از واحد نيز داريمب، ماند كسر

(
 در كسرى مانند همهى اجزای آن مدّ نظر بوده و شكل ديكرى نيز موجود است كه آن هم يك قسمت از آن مدّ نظر است كه در مجموع 〒 قَسمت از كلّ دو شكل را خواهيمر داشت.

 خورد. متلار نان خوردهشده را بهصورت يك كسر بزركتير از واهد نوشته و شكل آنذ را رمم كنيد.
 $\frac{\pi}{\lambda}$

است". بنابراين داريهم:

$$
\begin{aligned}
& \text { V Y . براي كسر } \\
& \text { Y Y . برای كسر }
\end{aligned}
$$

 بايد شُكلهايیى بكشيم كه هر كدام به 5 قسمت مساوى تقسيم شدهاند.

إعداه ويلاوطا
كسرهاى بزركتر از واحد را مىتوانيم بهصورت يك عدد مخلوط بنويسيهر. بهطور مثالى، اكر شخصى ه كلوجه اشته باشد و هر كدام را به
 كه مىتوانيم بنويسيم آن شخص

$$
\frac{i v}{\varphi}=\varphi \frac{1}{\varphi}
$$

$$
\frac{Y I}{A}=r \frac{\Delta}{\lambda}
$$

 روش اوّل:بايد تا جايىىيه امكان دارد، صورت كسر را به شكل جمع اعدادى بهاندازمى مخرج كسر بنويسيمر مانند:
 ب) $\frac{1 r}{Y}=\frac{Y+q}{y}=\frac{Y}{Y}+\frac{q}{y}=1+\frac{q}{Y}=1 \frac{q}{Y}$

روش دوم: میتوانيم صورت كسر را بر مخرج آن تقسيم كنيه. به اين ترتيب كه خارجقسمت تقسيم نشاندهندهى عدد صحيح (واحد كامل)، مقسومعليه نشاندهندمى مخرج كسر و باقىمانده نشاندهندهى صورت كسر مىياشد.

$$
\begin{aligned}
& \begin{array}{l|l}
\Delta q & (19) \\
-\Delta y & (T) \\
\hline(T) \\
\frac{\Delta q}{19}=(T) \frac{(T)}{(19)}
\end{array}
\end{aligned}
$$

$$
\frac{9 \gamma}{10} 0
$$

بهطور مثال براي تبديل كسر

كزينهى إبها
 براى تبديل عدد مخلوط به يك كسر بزركتر از واحد، كافى است قسمت صحيح را در مخرج
（1）$\left.\frac{(4)}{9}\right)^{20}=\frac{r y+\psi}{q}=\frac{r 1}{9}$ قسمت كسرى ضرب كرده و حاصل را با صورت آن كسر جمع كنيم و جواب نهايعـ را در صورت كسر بنويسيه．مخرج كسر جديد همه همان مخرج عدد مخلوط است．مانند：

$$
\begin{aligned}
& \frac{Y 1}{Q}(\\
& \gamma+\frac{r}{\omega} c \\
& \frac{Y}{r \omega}(4 \\
& \nabla \times \frac{\mu}{\omega}<{ }^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { IIre } \quad \text { Irce } \frac{(11)+111) \times I I}{111} \\
& \text { IY } \\
& 11 \frac{111}{111}=111+\underbrace{\frac{(11}{11}=111+1}_{\text {Sal }}=11 Y
\end{aligned}
$$

$$
\begin{aligned}
& 9 \frac{1}{1} 0 \\
& \frac{99}{\lambda} c \\
& \frac{90}{\lambda}<10 \frac{1}{\lambda} \\
& \text { 程 } \\
& 10 \frac{1}{\lambda}
\end{aligned}
$$

$9 \frac{9}{A}=9+\frac{9}{\lambda}=9+1 \frac{1}{\lambda}=9+1+\frac{1}{\lambda}=10 \frac{1}{\lambda}$
كسرى آن را به يك كسر كوجكاتر از واحد تبديل كثيم：

 تقسيم میى (بنج قسمت كوجك) ر الز صفر مى شماريم تا عدد

براى اين كار، هر واحد بايد ه قسمت شود. ابتدا دو واحد حركت مىكنيم و سيس 「 قسمت كوحك ديكر هم جلو میرويم.

ظاهراً ميعكدام از كسرهاى شده و هيجّ شكلى بيشتر يا كمتر از ديكرى رنك نشده است. يس اعدياد كسرى $\frac{Y \times Y}{Y \times Y}=\frac{Y}{A}$
$\frac{Y \times Y}{Y \times Y}=\frac{G}{1 Y}$ با كمى دقَت متوجَه مىشويمر كه احر صورت و مخرج كسر همحتين اكر صورت و مخرج كسر
 برای بررسى، كافى است شكلى برای

- $\frac{Y}{4} \neq \frac{Y}{1 Y}$ بنابراين میاتوان يك نتيجهى كلَى كرفت كه براى نوشتن كسرهاى مساوى با يكى كسر، كافى است صورت و مخرج آن كسر را در عددى يكسان (غير از صفر) ضرب كنيم.

$$
\frac{r}{V}=\frac{g}{I Y}=\frac{q}{Y 1}=\frac{Y Y}{Y A}=\frac{10}{r \Delta}=\frac{1 A}{Y Y}
$$

. 1 . ${ }^{\text {. }}$

. 10 اكر دو كسر
 اين مسوُال، يك كسر مساوى با
 كسر اصلى را ييدا هيكتيم:

$$
\frac{\gamma \times \Delta}{\varepsilon \times \Delta}=\frac{r \Delta}{r_{0}}
$$

mane
همانطور كه در قسهت قبل مشاهده كرديد، صورت و مخرع يك كسر را میىتوانيهم در عددى يكسان ضرب كنيه, مثلا $\frac{H \div \div}{r 0 \div F}=\frac{r}{\Delta}$ 1

بنابراين مىتوان كفت: براى ساده كردن كسرها، كافى است صورت و مخرج آنذها را بر يك عدد يكسان (غير از صفر) تقسيه كنيهم.

$$
\begin{aligned}
& \frac{Y g}{Y A}: \frac{Y G+Y}{Y A+Y}=\frac{1 A+Y}{Y Y+Y}=\frac{q+r^{r}}{H+Y^{\mu}}=\frac{r}{Y} \\
& \frac{Y 母+Y Y}{Y A+Y}=\frac{r}{Y}
\end{aligned}
$$

 مثلل برأ ساده Sردن كسر Q $\frac{V r \div r}{q \cdot \div r}=\frac{r \varphi}{K_{\Delta}}$

 $\frac{V Y+1 A}{q \cdot+1 A}=\frac{K}{\Delta}$

 و اعداد مشتركى صورت و مخرج را با هم ساده كنيه. بهطور مثال داريهم: البته ممكن است اين سؤل در ذهن شما ايجاد شود كه يكى عدد، ميكن أست جندين حاصلضرب

داشته باشد. به مثال مقابل توجّه كنيد: ميّبينيد كه تمام پاسخها يكسان هستند.

8
y

 همانطور كه در مثال قبل میابينيدء هر دو كسر

 كه با
 $\frac{\Delta}{A}, \frac{11}{1 Y} \quad$ آن وقت اوّلين شضرب كه بر مخرج كوجكتر بخششيذير است، كوجكترين شخرج مشتركى است. مثلاٌ میبينيد كه $\frac{\Delta}{A}=\frac{1 \Delta}{Y Y} \quad, \frac{11}{H Y}=\frac{Y Y}{Y Y} \quad$ كوحكترين مخرج مشترك اين دو كسر، عدد
 $\frac{1}{4}=\frac{q}{r g}, \frac{\Delta}{9}=\frac{r 0}{r g}, \frac{V}{9}=\frac{r A}{r q}$

左

همكن است اين سؤل در ذهن شما هطرح شود كه هرا بايد كوجڭترين شخرج مشتركى بين چچند كسر را بيدا كرى؟ براى فههميدن باسخ سوّال، به مثال بعد، توجّه كنيد:
$\frac{Y \times Y^{\mu}}{Y \times Y^{\prime \prime}}=\frac{9}{Y Y} \quad \frac{\Delta \times Y}{G \times Y}=\frac{10}{I Y}$

.Y. .Y

مى بينيد كه اكر مخرجهاى دو كسر يكسان باشند، بهراحتى مىتوانيه آنها را مقايسه كنيه.

بهطور كلّى براى مقايسهى هر دو كسر، كافى است صورتها يا مخرمجهايشان با هم برابر باشثد.
$\frac{14}{10} \otimes \frac{9}{10}$
$\frac{9}{r!} ® \frac{9}{11}$ الن) الكر مخرجها برابر باشند. كسرى بزركتر است كه صورت بزركترى داشته باشد. مانتد: ب) اتر صورتها برابر باشند، كسرى بزرگتر است كه مخرج كوجكترى داشته باشد. مانند: ج) اكر نه صورت و نه مخرج دو كسر با همم برابر نباشند، كافى است مخرجها يا صورتها را ا يكسان كنيم, تا كسرهاى مساوى با كسرهاى قبلى ساخته شوند. در واقع در اينجا مىتوانيم از كوجكترين مخرج مشتركى دو كسر كمك بكيريم. هانند: $\frac{10}{1 T} \bigcirc \frac{1 T}{10} \Rightarrow \frac{10 \times \Delta}{1 T \times \Delta} \bigcirc \frac{1 T \times F}{10 \times \psi} \Rightarrow \frac{00}{90} \bigodot \frac{\Delta T}{90} \Rightarrow \frac{10}{1 T} \bigcirc \frac{1 T}{10}$

 $\frac{9}{a} \otimes \frac{19}{19}$

ب) هميشه كسرهاى بزركتر از واحد از كسرهاى مساوى با واحد بزركترند. هانند: ج) مميشه كسرماى كوجكتر از واحد، از كسرهاى بزركتر از واحد كوجكترند. مانند: د) هميشه كسرهايى كه دارای صورت صفر هستند (جون برابر با صفر مىباشند)، از ممهى كسرها كوجكترند. مانند: $\frac{\therefore}{A} \odot \frac{1}{1000} \cdot \frac{\circ}{r \omega} \odot \frac{r}{r} \cdot \frac{\circ}{r T \Delta} \Theta \frac{10}{Y}$ $\frac{9}{9} \Theta \frac{999}{999}$

هـ) هميشه كسرهاى برابر با واحد، با هم برابرند. مانتد:
 بهطور كتّى مىتوانيم, با تبديل اعداد مخلوط به كسر، از قواعد مربوط به مقايسهى كسرها استفاده كنيه و عمل مقايسه را النجام دهيمه. مانثد: $\frac{1 \Delta}{A} \bigcirc 1 \frac{\psi}{\Delta} \Rightarrow \frac{1 \Delta}{A} \bigcirc \frac{q}{\Delta} \Rightarrow \frac{Y \Delta}{\mu_{0}} \oslash \frac{Y T}{\mu_{0}} \Rightarrow \frac{1 \Delta}{A} \oslash \cdot \frac{F}{\Delta}$

البتّه رامهاى ديكرى همر براى مقايسهى دو عدد مخلوط وجود دارد كه در زير به آنها اشاره مى كنيه:
 ب) در مقايسهى دو عدد مخلوط، بايد توجّه كنيمّ كه قسمت كسرى هر كدام از اعداد مخلوط، كوحكتر از واحد هست يا نه. اتر قسمت كسرى،
 $\Delta \frac{q}{y} \odot 1 r \frac{1}{r}$

عد صحيح (واحد كامل) آن يزركتر باشد. مائند: ج) آكر قسمت عدد صحيح دو عدد مخلوط با هم برابر باشند، بايد كسرهايشان را براساس آنجه در بخش مقايسهى كسرها كفتيه، مقايسه $r \frac{\varphi}{y} \bigcirc r \frac{A}{11} \Rightarrow r \frac{r \varphi}{V Y} \oslash r \frac{\Delta \varphi}{V y} \Rightarrow r \frac{\varphi}{V} \oslash r \frac{A}{11}$

كنيهر. مانند:
 براى محاسبهى جمع و تفريق اعدلاد كسرى واعدلاد مخلوط روى محور، كافى است با توجه به مخرجها، هر واحد روى محور را به قسمتهاى
 اوتلى اضافه (جمع) يا الز آن كم (تفريق) كنيه. اكر هند عدد ديكر نيز داشتيهر به همين صورت عمل ميكنيم.

Yا ج. جمع و تغريق.هاى زير راروى معور انجام دصيد.
(1) $\frac{1}{Y}+\frac{Y}{Y}=\frac{r}{Y}$

c) $r \frac{1}{r}+\frac{r}{r}+1=0$

ب) $\frac{V}{f}-\frac{\Delta}{q}=\frac{Y}{q}$

D) $r \frac{r}{r}-\frac{\Delta}{r^{r}}-\frac{r}{r}=Y \frac{1}{r}$

 ابتذا كوجكترين مخرج مشترى آنها را تعيين كرده و سيس براساس كوجكترين مخرج مشترك آنها، تقسيهبندى هر واححد را انتجام دهيهم.
(el) $\frac{1}{r}+\frac{r}{Y}=\frac{Y}{Y}+\frac{r}{Y}=1 \frac{1}{Y}$

d
كافى است شكلى متناسب با هر كسر رسم كرده و سپس آنها را با همر جمع كنيه|. (در صورت نياز، ابتدا مخرة مشترك مىكيريهم.)

(il) $1+\frac{\Delta}{Y^{\mu}}==1+1 \frac{1}{r^{\mu}}=Y \frac{Y}{r^{r}}$

\square
\square
\square
\square

e) $\frac{r}{Y}+\frac{Y}{Y}=\frac{q}{I Y}+\frac{A}{I Y}=1 \frac{\Delta}{I Y}$ \square $=$| | | | |
| :--- | :--- | :--- | :--- |
| | | | |
| | | | | \square

 بهاندازهى كسر دوم، از آن خط میزنيه. (هر جا لازم بود، ابتدا مخرج مشترك مى كيريهه)

فالف) $\frac{\varphi}{\Delta}-\frac{1}{r}=\frac{\lambda}{10}-\frac{\Delta}{10}=\frac{r}{10}$

	\boldsymbol{X}	\boldsymbol{X}	\boldsymbol{X}	
	\boldsymbol{X}	\boldsymbol{X}		

ب) $r \frac{1}{r}-1 \frac{1}{r}=r \frac{r}{\gamma}-1 \frac{r}{\varphi}=\frac{\Delta}{\varphi}$

X	X	X
X	X	X
$\underbrace{}_{\text {دll }} 1$		

\boldsymbol{X}		
\boldsymbol{X}		

 اتر مخرج كسرها مساوى باشند، صورتهاى آنها را جمع يا تفريق كرده و مخرج را نيز بدون تغيير مىنويسيهر مانند: فell) $\frac{r}{Y}+\frac{r}{Y}=\frac{\Delta}{Y}$ ب) $\frac{r}{q}-\frac{1}{q}=\frac{r}{q}$
امّا اتر مخرجها يكسان نباشند، بايد كوحكترين مخرج مشترك آنها را بيدا كرده و سيس عمليات را انجام دهيم. مانند:
 در محاسباتى كه اعداد مخلوط داريه، مىتوانيهم آنها را به كسر تبديل كرده و سبس مانند بالا محاسبات را انجام دهيم و ي ا اينكه قسمت عدد صححيح اعداد مخلوط را جدا كنيم و بعد محاسبات را انجام دهيمه. مانتد:
(الف) $\Delta \frac{1}{Y}+r \frac{1}{r}-\frac{A}{r!}=(\Delta+r)+\left(\frac{1}{Y}+\frac{1}{r}-\frac{A}{r!}\right)=A+\left(\frac{r}{r!}+\frac{Y}{r!}-\frac{A}{r!}\right)=A+\frac{r}{r!}=A \frac{r}{r!}$
ب) $\Delta \frac{1 r}{19}-r \frac{r}{A}-1 \frac{1}{A}=(\Delta-r-1)+\left(\frac{1 r}{19}-\frac{r}{A}-\frac{1}{A}\right)=r+\left(\frac{1 r}{19}-\frac{9}{19}-\frac{r}{19}\right)=r+\frac{\Delta}{19}=r \frac{\Delta}{19}$

ب) $\omega \frac{r}{\Delta}-1 \frac{r}{r}=\omega \frac{q}{1 \Delta}-1 \frac{10}{1 \Delta}=r \frac{1 \Delta+\varepsilon}{1 \Delta}-1 \frac{10}{1 \Delta}=(Y-1)+\left(\frac{Y}{1 \Delta}-\frac{10}{1 \Delta}\right)=r \frac{11}{1 \Delta}$
(2) $Y-r \frac{\varphi}{\Delta}=8 \frac{\Delta}{\Delta}-r \frac{\varphi}{\Delta}=(\xi-\mu)+\left(\frac{\Delta}{\Delta}-\frac{\varphi}{\Delta}\right)=r \frac{1}{\Delta}$

هركاه بخواهيهم ضرب دو كسر را روى يك شكل نشان دهيه، بايد مقدار هر دو كسر را روى شكل

براى ضرب اعداد مخلوط به كمك شكل، از محاسبهى مساحت مستطيل كمك مى كيريهر. به اين ترتيب كه هر عدد مخلوط، بهعنوان يكى الز اضلاع مستطيل قرار مىكيرد و سيس با محاسبهى مساحت قسمتّهاى تشكيلشده در داخل مستطيل، حاصلضرب بهدست مىآيد.

فالف $r \frac{1}{r^{\prime}} \times \frac{1}{\varphi}=(1 \times 1)+(1 \times 1)+\left(1 \times \frac{1}{r^{\mu}}\right)+\left(\frac{1}{\varphi} \times 1\right)+\left(\frac{1}{\varphi^{\varphi}} \times 1\right)+\left(\frac{1}{\varphi} \times \frac{1}{r^{\mu}}\right)$ $=Y+Y+\frac{1}{Y}+\frac{1}{Y}+\frac{1}{Y}+\frac{1}{1 Y}=Y+\frac{Y}{1 Y}+\frac{Y}{1 Y}+\frac{Y}{I Y}+\frac{1}{1 Y}=Y+\frac{11}{1 Y}=Y \frac{11}{1 Y}$

ب) $r \frac{\Delta}{\gamma} \times r \frac{11}{r_{0}}=(1 \times 1)+(1 \times 1)+(1 \times 1)+\left(1 \times \frac{\Delta}{\gamma}\right)+(1 \times 1)+(1 \times 1)+(1 \times 1)$
$+\left(1 \times \frac{\theta}{\gamma}\right)+\left(\frac{11}{Y_{0}} \times 1\right)+\left(\frac{11}{Y_{0}} \times 1\right)+\left(\frac{11}{Y_{0}} \times 1\right)+\left(\frac{11}{Y_{0}} \times \frac{\theta}{\gamma}\right)$
$=1+1+1+\frac{\Delta}{Y}+1+1+1+\frac{\Delta}{Y}+\frac{11}{Y_{0}}+\frac{11}{Y_{0}}+\frac{11}{Y_{0}}+\frac{\Delta \Delta}{1 Y_{0}}$
$=\varphi+\frac{\Delta}{\gamma}+\frac{\Delta}{\gamma}+\frac{\Pi}{Y_{0}}+\frac{\Pi}{Y_{0}}+\frac{\Pi}{Y_{0}}+\frac{\Delta \Delta}{1 \varphi_{0}}$

	1	1	1	$\frac{\Delta}{\mathrm{Y}}$		
1	$\|x\|$	$\|x\|$	$\|x\|$	$1 \times \frac{\Delta}{Y}$		
1	\|x		$\|x\|$	\|x		$1 \times \frac{0}{\gamma}$
-	$\frac{11}{Y a} \times 1$	$\frac{11}{11} \times 1$	$\frac{11}{Y 0} \times 1$	$\frac{11}{r_{0}} \times \frac{\theta}{Y}$		

(a)) $\frac{r}{Y} \times \frac{\Delta}{10}=\frac{1}{r} \times \frac{1}{r}=\frac{1}{g}$

كامى ضرب جند كسر را بهصورت يك كسر يزرى مىینويسند. هر اين حالت هم، ساده كردن دقيقأ مثل ساده كردن ضرب دو يا جند كسر

اكر در عمليّات ضرب، عدد مخلوط وجود داشت، ابتدا بايد آن را به كسر تبديل كنيم و سيس مانند بالا، عملّات ضرب را انجام دهيم. (الف) $1 \frac{r}{r} \times \frac{6}{4}=\frac{\Delta}{r} \times \frac{r 9}{9}=\frac{1 \% \Delta}{1 A}=A \frac{1}{1 A}$

$$
\text { ب) } r \times r \frac{1}{A} \Rightarrow \frac{A^{\prime}}{1} \times \frac{r \Delta}{Z_{r}}=\frac{r \Delta}{r}=1+\frac{1}{r}
$$

 براى نمايش ضرب عدد صحيح در كسر يا عدد مخلوط روى محور، بهصورت زير عمل مىكيهم:

الف) ابتدا عدد مخلوط را به كسر تبديل میىكيهر. ب) همهى واحدها را بهاندازهى مخرج تقسيهريندى مى كنيهر.
 د) تعداد حركتها بهانثازهى عدد صحيحى است كه كه در كسر ضرب شده است.

(الف) $\alpha \times \frac{r}{r} \Rightarrow r \frac{1}{r}$

ب) $r \times \frac{r}{\omega}=r \times \frac{\gamma}{\omega} \Rightarrow r \frac{r}{\omega}$

(0)

نمايش تقسيه كسرما روى محور را مى توان به جند دسته تقسيم كرد:

 YA

يس در عدد با. دوازده تا

 از (c) $r=1 \frac{1}{r}=r=\frac{r}{r}$

لالزم براى هر حركت) يس Y Y خركت را انجام داديم.
 أنكاه عدد سمت حچب را روى محور نمايش ميدهيم و سبس از صغر شروع به حركت ميكتيهر هر حركت بايد بطاندازمى صورت كسر دوم باشد.
فالف $\frac{q}{10}=\frac{\%}{10}$

 براى هر حركت) يس

 نياز براي هر حركت) يس

 مقدارى است كد بايد آن را تقسيمه كنيمه يس ابتدل آن را روى شكل نمايش مىدهيهـ. بهطور مئال براى انجام عبارت \uparrow كشيده و سهس لا $\frac{1}{r} \div Y=\frac{1}{H r} \quad$ قسمت مساوى تقسيه میى همانطور كه در شكل بالا ملاحظه مى كنيد، هر قسمت رنكى

يعنى آك,

 بايد با صورت كسر دوم مساوى باشد. (هر دسته يك واحد جديد حساب مىشود.)
(لغ) $\frac{\lambda}{9} \div \frac{r}{9}=$

براى كثيدن شكل اين قسمت، ابتدا بايد مخرج مشترك بكيريمه سيس مائند مثال قبل، عمليّات را انجام دهيمر. (خانهماى رنتششده را به قسمتههاى ينجتايكى دستهبندى میاكنيهر)

در اين روش، ابتدل براى دو كسر مخرج مشترى كرفته و سبس براى بهدست آوردن حاصل تقسيه، كافى است صورت اوتى را بر صورت دومى تقسيم كنيه. به مثالهایى زير توجّه كنيد: $\begin{array}{ll}\text { al } \frac{(9)}{\Delta} \div \frac{(r)}{\Delta}=\frac{r}{r} & \text { ب) } \frac{r}{q} \div \frac{1}{r}=\frac{(A)}{r q} \div \frac{(9)}{r q}=\frac{A}{q}\end{array}$ c) $1 \frac{r}{y} \div \Delta=\frac{11}{y} \div \frac{\Delta}{1}=\frac{(1)}{y} \div \frac{(D)}{y}=\frac{11}{r a}$
روش دوم: تبديل تقسيم هQ ضرب

در اين روش، نيازى به مخرج مشترك كرفتن نمىباشد: فقط كافى است كسر اولى را در معكوس كسر دومى ضرب كنيم. (توجّه: هركاه

(i) $\frac{\varphi}{\Delta}=\frac{\mu}{\Delta}=\frac{\varphi}{\phi} \times \frac{\phi}{r^{r}}=\frac{\varphi}{r^{\mu}}=1 \frac{1}{\mu}$
c) $\frac{r}{q}=\frac{1}{r}=\frac{r}{q} \times \frac{r}{1}=\frac{\lambda}{q}$
e) $\frac{Y}{Y} \div \Delta=\frac{11}{Y} \div \frac{\Delta}{1}=\frac{11}{V} \times \frac{1}{\Delta}=\frac{11}{Y Q}$

د) $\frac{r}{\lambda} \div r \frac{1}{10}=\frac{r}{A} \div \frac{Y 1}{10}=\frac{\not X^{\prime}}{X_{\varphi}} \times \frac{X_{6}^{2}}{Y Y_{Y}}=\frac{\Delta}{Y A}$
 $r \frac{1}{1-}=\frac{Y 1}{1 .} \xlongequal{\text { س }} \frac{1-}{r_{1}}$

قرا, نماديم و علامت

(i)l) $\frac{\Delta}{r} \div \frac{r}{r}=\frac{D}{r}$

ب) $\frac{\Delta}{r}: \frac{r}{r}=\frac{\partial}{r}$
c) $\frac{\frac{\Delta}{r}}{\frac{r}{r}}=\frac{\Delta}{r} \div \frac{r}{r}=\frac{\Delta}{r}$

 $\frac{\frac{1}{\Delta}+\frac{r}{\Delta}}{r-1 \frac{1}{r}}=\frac{\frac{r}{\Delta}}{\frac{1}{r}}=\frac{r}{\Delta} \div \frac{1}{r}=\frac{r}{\Delta} \times \frac{r}{1}=\frac{A}{\Delta}=\frac{r}{\Delta}$ حاصل آنها، كافى است حاصل صورت را بر حامل مخرج تقسيه كنيهر مانئد:

$$
\times\left(\frac{\pi}{\frac{\pi}{2}} \frac{\Lambda}{\frac{1}{r}}=\frac{\Lambda}{\Delta}=1 \frac{r}{\Delta}\right.
$$

در دمالسبی حاصل| نزديك در نزديك، استغاده كيمب' يعنى:

كي در اين روشّ حاهلضضرب بالاترين و حايينترين عدد رادر صورت جواب و حاملضضرب دو عدد وسط رادر مخرج جواب مرار میدهیهم.

.YY

ب) $\frac{r+1 \frac{1}{r}}{r-1 \frac{1}{r}}=\frac{r \frac{1}{r}}{r \frac{Y}{Y}-1 \frac{1}{Y}}=\frac{r \frac{1}{r}}{1 \frac{1}{Y}}=\frac{\frac{\gamma}{r}}{\frac{r}{r}}=\frac{\gamma \times Y}{X} \times \frac{Y}{r}=\frac{\gamma}{r}=r \frac{1}{r}$
(e) $r \frac{1}{r}+\frac{r \frac{1}{Q}}{Y-1 \frac{1}{r}}=r \frac{1}{Y}+\frac{\frac{1 q}{Q}}{r \frac{Y}{Y}-1 \frac{1}{Y}}=r \frac{1}{Y}+\frac{\frac{1 q}{Q}}{r \frac{1}{Y}}=r \frac{1}{Y}+\frac{\frac{19}{\partial}}{\frac{\Delta}{Y}}$
$=Y \frac{1}{Y}+\frac{19 \times Y}{\Delta \times \Delta}=Y \frac{Y}{Y}+\frac{r Y}{Y \Delta}=Y \frac{1}{Y}+\frac{V}{Y \Delta}=(Y+1)+\left(\frac{Y}{Y}+\frac{V}{Y \Delta}\right)=r+\left(\frac{Y \Delta}{Q_{0}}+\frac{1 Y}{Q_{0}}\right)=r+\frac{r q}{\omega_{0}}=r \frac{r q}{\omega_{0}}$
د) $r+\frac{1}{r+r \frac{1}{r}}=r+\frac{1}{\varepsilon \frac{1}{r}}=r+\frac{\frac{1}{1}}{\frac{19}{r}}=r+\frac{r \times 1}{1 \times 19}=r+\frac{r}{19}=r \frac{r}{19}$

.MP

$$
r \frac{1}{r} \times r \frac{r}{\gamma}-\varphi \frac{r}{\lambda} \div r \frac{\varphi}{\Delta}=\underbrace{\frac{\gamma}{r} \times \frac{r \varphi}{\gamma}}_{\frac{\Lambda}{1}=1}-\underbrace{\frac{1 \varphi}{19}}_{\frac{r \sigma^{\Delta}}{\Lambda} \times \frac{\partial}{\lambda \times r}=\frac{r \Delta}{\Delta}}=\lambda-\frac{r \Delta}{18}=\lambda-1 \frac{9}{18}=\gamma \frac{19}{18}-1 \frac{9}{18}=9 \frac{\gamma}{18}
$$

ه\%. هاصل عبارت زير را بهدست آوريــ.

$$
r \frac{1}{r}+r \frac{1}{\varphi} \div\left(r \frac{1}{r}-1 \frac{1}{\varphi}\right)=r \frac{1}{r}+r \frac{1}{\varphi} \div(\underbrace{\mu \frac{r}{\varphi}-1 \frac{1}{\varphi}}_{r \frac{1}{\varphi}})=r \frac{1}{r}+\underbrace{\varphi}_{\frac{r}{\varphi}+\frac{1}{\varphi}+r \frac{1}{\varphi}=1} \Rightarrow r \frac{1}{r}+1=r \frac{1}{r}
$$

 مسيله، لازم نيست كه حتماً نقاشى خوبى داشته باشيهم كافى است شكل را بامصورت تقريبى رسمى كنيهر. به مثالمهاى زير دقّت كنيد:

 خوردن، در هه لالرتغاعى قرال میكمردا

YA

 ليتر

ي q q. على روز اوّل علي باقى مانده امتأ9

 حوچرخه وجود دارد

دار ند. يس حر ابتدا به هر كدام Y קرخ مىیهميم:

الف) به سؤالات زير پاسخ كامل دهميد.
(المل عبارتهاي زير را بهدست آوريد.

$$
\begin{aligned}
& \text { ب) }\left(r \frac{1}{r}-1 \frac{1}{r}\right) \div\left(\frac{r}{r}+\frac{1}{\gamma}\right)= \\
& \Rightarrow\left(r \frac{r}{\Delta}-r \frac{r}{r}\right)+\left(1 \frac{r}{r}+\frac{\varphi}{\Delta}\right)=
\end{aligned}
$$

c) $\frac{\frac{r}{r}+\frac{r}{\Delta}}{\frac{\gamma}{1_{0}}-\frac{\varphi}{r_{0}}}=$

ب)

3)

(0 (${ }^{(1)}$

--
(F) الثت) سهيلا

$$
\text { ب) كسر ¢ } \frac{9}{\text { ¢ه كسرى كم دارد تا Y واسد شود؟ }}
$$

(D) با رسم شكله، تشان دهيد كه دو كسر (A)

ب)

(A) هريكى از نتاط ; (A)
$\frac{\Delta}{r} \cdot \frac{r}{r} \cdot \frac{r}{r}$
$1 \frac{r}{\Delta} \cdot r \frac{r}{\Delta}: \frac{1 s}{\Delta}$

$\frac{r}{Y} \cdot \frac{1 r}{Y} \cdot \frac{\gamma}{Y}$

C) $\psi \frac{\psi}{Y} \square \frac{1 \lambda}{Y}$
all) $\frac{\mathbf{A}}{10} \square \frac{1}{10}$
-) $\frac{\Delta}{5} \square \frac{9}{f}$
د) $\frac{\Delta 1}{4} \square 5$
a) $\frac{Y q}{\Delta \Delta} \square \frac{r q}{r Y}$
g) $\frac{1 Y}{F} \square \frac{10}{r}$
j) $\frac{\Delta}{9} \square \frac{4}{6}$
c) $\lambda \frac{\Psi}{10} \square \Delta \frac{10}{r}$
b) $₹ \frac{Y}{Y^{\prime}} \square Y$
(lo)

$\frac{1}{4} \cdot \frac{4}{9} \cdot \frac{1}{14} \cdot \frac{10}{19} \cdot \frac{14}{14}$, \qquad

-ill) $r \frac{1}{r}+1 \frac{1}{r}=$
e) $\frac{\Delta}{1_{0}}+\frac{1}{r}-\frac{r}{\Delta}=$
c) $r \frac{r}{r}+r \frac{r}{s}=$
3) $r \frac{1}{r}-1 \frac{r}{r}=$
(IV)
c) $V-4 \frac{\psi}{4}=$
s) $1 \frac{1}{r}+r \frac{\Delta}{5}=$
.
iil) $r \frac{1}{4} \times 1 \frac{1}{r}=$
(il) $\frac{r}{\Delta} \times \frac{r}{r}=$
ب) $\frac{\Delta}{6} \times \frac{1}{r}=$
c) $\frac{f}{\Delta} \div \frac{1}{\mu}=$
a) $\frac{Y}{\lambda} \div \frac{r}{\lambda}=$

(ii)) $\frac{Y Y}{Y G}=\frac{\square}{9}=\square$

ب) $\frac{11}{\square}=\frac{Y Y}{Y}$
c) $\frac{y}{q}=\frac{4 q}{\square}$
د) $\frac{r \Delta}{\square}=\frac{10}{\lambda}$
a) $\frac{1 r}{1 \lambda}=\frac{\square}{1 r}$
g) $\frac{\square}{6}=\frac{\square}{1}=\Delta$
j) $\frac{r G}{\square}=\frac{r_{0}}{\square}=\frac{1 G}{\square}=f$
c) $\frac{1}{6}=\frac{\square}{\square}$
b) $\frac{1 \boldsymbol{q}}{\square}=\boldsymbol{F}=\frac{r r}{\square}$
$\frac{1}{\Delta}, \cdots, \cdots \quad-\cdots \frac{1}{\mu}$
.
 (19) (19) ((
(حل با رسم شكل)
(

(

(YY)

در شكل زير، عدد وسط هر ضلع مثلّث، برابر با ماصلضرب اعداد دو سر ڤلع است. شكل را

كامل ككني.

(ri)

$\frac{1}{\uparrow} \frac{1}{\Gamma}$ على
 (c) درخت ديكر بیتواند بكارد 5

